\mml 1

$\pi $

72E07F313C973C8CB2030C22C1CF81F4

𝜋

\mml 2

$\Psi ^2_1$

9339FEF72A9AF81E22B3496564B5208D

Ψ 1 2

\mml 3

$\alpha $

B7932A8B63ED6AE7CA61921EC2B87D40

𝛼

\mml 4

$\omega $

32902E719B16DEC67B28C9943762CD89

𝜔

\mml 5

$\lim _{n\rightarrow \infty }x=0$

99599FCED516EC76AA3BC3E64F36D51D

lim 𝑛 𝑥 = 0

\mml 6

\begin {equation}\lim _{n\rightarrow \infty }x=0\end {equation}

58DB33CC6008044EBFBAF14DD0E01211

lim 𝑛 𝑥 = 0

\mml 7

\begin {equation*}\sum _{i=0}^{\infty } x + 1\end {equation*}

0FA9E148128F6070D18DB3FC24D54CF1

𝑖 = 0 𝑥 + 1

\mml 8

\begin {equation}\sum _{i=0}^{\infty }x_i=\int _{0}^{\pi +2} f\end {equation}

997D925C998243FE3FF8CAB4A2F0E638

𝑖 = 0 𝑥 𝑖 = 0 𝜋 + 2 𝑓